2023年山東省泰安市高新區(qū)中考數(shù)學一模試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題(本大題共12小題,在每小題給出的四個選項中,只有一個是正確的,請把正確的選項選出來,每小題選對得4分,錯選、不選或選出的答案超過一個,均記零分)
-
1.比較實數(shù)(π-3)0,
,2,-1.7的大小,其中最小的實數(shù)為( ?。?/h2>-38組卷:33引用:1難度:0.8 -
2.下列計算正確的是( )
組卷:170引用:8難度:0.8 -
3.下列圖案中是中心對稱圖形但不是軸對稱圖形的是( )
組卷:106引用:1難度:0.9 -
4.如圖是幾個相同的小立方塊所搭的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小立方塊的個數(shù),則這個幾何體的左視圖是( ?。?
組卷:71引用:1難度:0.7 -
5.如圖,m∥n,△ABC的頂點C在直線m上,若AB=AC,∠A=40°,∠1=20°,則∠2的度數(shù)為( )?
組卷:310引用:1難度:0.5 -
6.為了了解學生學科作業(yè)量,某中學對部分周末學科作業(yè)的時間進行抽樣調(diào)查,結(jié)果如表:
時間(小時) 1 2 3 4 學生人數(shù)(人) 3 12 9 6 組卷:204引用:2難度:0.7 -
7.如圖,在△ABC中,D,E,F(xiàn)分別為BC,AC,AB邊的中點,AH⊥BC于H,F(xiàn)D=12,則HE等于( ?。?/h2>
組卷:303引用:10難度:0.7 -
8.成語“五雀六燕”出自中國古代數(shù)學名著《九章算術(shù)》第八卷《方程》中一道名題.原題為:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問燕、雀一枚各重幾何?”譯文為:“今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤.問雀、燕每只各多重?”現(xiàn)設每只雀x斤,每只燕y斤,則可列出方程組( ?。?/h2>
組卷:259引用:7難度:0.7
三、解答題(共7小題,滿分78分.解答應寫出必要的文字說明、證明過程或推演步驟)
-
24.定義:若拋物線y=ax2+bx+c(ac≠0)與x軸交于A,B兩點,與y軸交于點C.線段OA,OB,OC的長滿足OC2=OA?OB,則這樣的拋物線稱為“黃金拋物線”.如圖,“黃金拋物線”y=ax2+bx+2(a≠0)與x軸的負半軸交于點A,與x軸的正半軸交于點B,與y軸交于點C,且OA=4OB.
(1)求拋物線的解析式;
(2)點P為AC上方拋物線上的動點,過點P作PD⊥AC于點D.
①求PD的最大值;
②連接PC,當以點P,C,D為頂點的三角形與△A CO相似時,求點P的坐標.組卷:272引用:1難度:0.3 -
25.【基礎鞏固】
(1)如圖1,在△ABC中,D為AB上一點,∠ACD=∠B.求證:AC2=AD?AB.
【嘗試應用】
(2)如圖2,在平行四邊形ABCD中,E為BC上一點,F(xiàn)為CD延長線上一點,∠BFE=∠A.若BF=4,BE=3,求AD的長.
【拓展提高】
(3)如圖3,在菱形ABCD中,E是AB上一點,F(xiàn)是△ABC內(nèi)一點,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,則菱形ABCD的邊長為 .12組卷:2492引用:16難度:0.1