2023年山東省聊城市高考數(shù)學一模試卷
發(fā)布:2024/11/20 12:0:2
一、單項選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項符合題目要求.
-
1.設集合A={x|1<2x<8},B={x||x+1|≥3},則A∩B=( ?。?/h2>
A.(0,2] B.[2,3) C.(2,3] D.(0,3) 組卷:110引用:3難度:0.8 -
2.復數(shù)z在復平面內對應的點為(2,1),則
=( ?。?/h2>2iz-1A.1+i B.1-i C.-1+i D.-1-i 組卷:207引用:9難度:0.8 -
3.將函數(shù)f(x)=sinx-cosx的圖象向左平移
個單位長度,得到函數(shù)y=g(x)的圖象,關于函數(shù)y=g(x)的下列說法中錯誤的是( ?。?/h2>7π12A.周期是2π B.非奇非偶函數(shù) C.圖象關于點 中心對稱(5π3,0)D.在 內單調遞增(0,π2)組卷:202引用:3難度:0.6 -
4.“綠色出行,低碳環(huán)?!币殉蔀樾碌臅r尚.近幾年國家相繼出臺了一系列的環(huán)保政策,在汽車行業(yè)提出了重點扶持新能源汽車和最終停止傳統(tǒng)汽車銷售的時間計劃表,為新能源汽車行業(yè)的發(fā)展開辟了廣闊的前景.新能源汽車主要指電動力汽車,其能量來源于蓄電池.已知蓄電池的容量C(單位:A?h)、放電時間t(單位:h)、放電電流I(單位:A)三者之間滿足關系
.假設某款電動汽車的蓄電池容量為3074A?h,正常行駛時放電電源為15A,那么該汽車能持續(xù)行駛的時間大約為(參考數(shù)據:C=Ilog1.52?t)( )6×10log1.53≈3074A.60h B.45h C.30h D.15h 組卷:135引用:4難度:0.7 -
5.在正方體ABCD-A1B1C1D1中,直線m、n分別在平面ABCD和ABB1A1,且m⊥n,則下列命題中正確的是( )
A.若m垂直于AB,則n垂直于AB B.若m垂直于AB,則n不垂直于AB C.若m不垂直于AB,則n垂直于AB D.若m不垂直于AB,則n不垂直于AB 組卷:169引用:4難度:0.8 -
6.M是△ABC內的一點,若
,BM=13BA+λBC,則λ+μ=( ?。?/h2>AM=12AB+μACA. 76B.1 C. 56D. 13組卷:230引用:2難度:0.8 -
7.研究發(fā)現(xiàn)橢圓的任意兩條互相垂直的切線的交點都在同一個圓上,這個圓叫做橢圓的蒙日圓.設橢圓C的焦點為F1,F(xiàn)2,P為橢圓C上的任意一點,R為橢圓C的蒙日圓的半徑.若
的最小值為PF1?PF2,則橢圓C的離心率為( ?。?/h2>15R2A. 12B. 22C. 13D. 33組卷:152引用:1難度:0.6
四、解答題:本題共6小題,共70分.解答應寫出文字說明、證明過程或演算步驟.
-
21.已知雙曲線C:
(a>0,b>0)的右焦點為F,一條漸近線的傾斜角為60°,且C上的點到F的距離的最小值為1.x2a2-y2b2=1
(1)求C的方程;
(2)設點O(0,0),M(0,2),動直線l:y=kx+m與C的右支相交于不同兩點A,B,且∠AFM=∠BFM,過點O作OH⊥l,H為垂足,證明:動點H在定圓上,并求該圓的方程.組卷:221引用:2難度:0.4 -
22.已知函數(shù)
,g(x)=2xex-lnx-x-ln2.f(x)=xlnx+ax
(1)若直線y=x是曲線y=f(x)的一條切線,求a的值;
(2)若對于任意的x1∈(0,+∞),都存在x2∈(0,+∞),使f(x1)≥g(x2)成立,求a的取值范圍.組卷:239引用:5難度:0.5