2023-2024學(xué)年寧夏六盤山高級(jí)中學(xué)高二(上)期中數(shù)學(xué)試卷
發(fā)布:2024/10/12 12:0:2
一、單項(xiàng)選擇題:本題共八小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)符合題目要求.
-
1.橢圓9x2+25y2=225的焦距為( ?。?/h2>
組卷:118引用:2難度:0.8 -
2.已知圓C1:x2+y2+2x+8y-8=0與圓C2:x2+y2-4x-4y-2=0相交,則圓C1與圓C2的公共弦所在的直線的方程為( )
組卷:38引用:1難度:0.7 -
3.已知A為拋物線C:y2=2px(p>0)上一點(diǎn),點(diǎn)A到C的焦點(diǎn)的距離為12,到y(tǒng)軸的距離為9,則p=( ?。?/h2>
組卷:6894引用:33難度:0.7 -
4.以雙曲線
的右焦點(diǎn)為圓心,與雙曲線的漸近線相切的圓的方程為( ?。?/h2>x2-y23=1組卷:94引用:1難度:0.7 -
5.在三棱錐O-ABC中,E為OA的中點(diǎn),
,若CF=13CB,OA=a,OB=b,OC=c,則p+q+r=( ?。?/h2>EF=pa+qb+rc組卷:77引用:2難度:0.7 -
6.設(shè)x,y∈R,向量
,a=(0,1,z),b=(2,y,2),且c=(-3,6,-3),a⊥c,則b∥c=( )|a-b|組卷:35引用:3難度:0.8 -
7.F1、F2是橢圓
的左、右焦點(diǎn),點(diǎn)P在橢圓C上,|PF1|=6,過F1作∠F1PF2的角平分線的垂線,垂足為M,則|OM|的長為( ?。?/h2>C:x225+y29=1組卷:2336引用:6難度:0.3
四、解答題:本題共六小題,第17題10分,第18-22題每小題10分,共70分.
-
21.在三棱柱ABC-A1B1C1中,側(cè)面正方形BB1C1C的中心為點(diǎn)M,A1M⊥平面BB1C1C,且
,點(diǎn)E滿足BB1=2,AB=3.A1E=λA1C1(0≤λ≤1)
(1)若,求證A1B∥平面B1CE;λ=12
(2)求點(diǎn)E到平面ABC的距離;
(3)若平面ABC與平面B1CE的夾角的正弦值為,求λ的值.255組卷:8引用:3難度:0.5 -
22.已知橢圓E:
的一個(gè)焦點(diǎn)為y2a2+x2b2=1(a>b>0),長軸與短軸的比為2:1.直線l:y=kx+m與橢圓E交于P、Q兩點(diǎn),其中k為直線l的斜率.(0,3)
(Ⅰ)求橢圓E的方程;
(Ⅱ)若以線段PQ為直徑的圓過坐標(biāo)原點(diǎn)O,問:是否存在一個(gè)以坐標(biāo)原點(diǎn)O為圓心的定圓O,不論直線l的斜率k取何值,定圓O恒與直線l相切?如果存在,求出圓O的方程及實(shí)數(shù)m的取值范圍;如果不存在,請(qǐng)說明理由.組卷:816引用:3難度:0.3