2020-2021學(xué)年江蘇省南京一中高三(下)培優(yōu)講義數(shù)學(xué)試卷(1)
發(fā)布:2025/1/5 21:30:2
解答題
-
1.數(shù)列{an}的通項(xiàng)公式an=3n-20,求數(shù)列{|an|}的前n項(xiàng)和Tn.
組卷:1引用:1難度:0.5 -
2.已知{an}滿足an≠0,且{
}的前n項(xiàng)和Sn,證明數(shù)列{an}是等差數(shù)列的充要條件是Sn=1anan+1.na1an+1組卷:0引用:1難度:0.4 -
3.已知數(shù)列{an}的通項(xiàng)公式an=
,求數(shù)列{an}的前n項(xiàng)和Sn.1n(n+1)(n+2)組卷:36引用:1難度:0.4 -
4.已知數(shù)列{an}的通項(xiàng)公式an=
,求數(shù)列{an}的前n項(xiàng)和Sn.n-1n(n+1)(n+2)組卷:6引用:1難度:0.5 -
5.已知數(shù)列{an}的通項(xiàng)公式an=
,求數(shù)列{an}的前n項(xiàng)和Sn.1nn+1+(n+1)n組卷:8引用:1難度:0.6
解答題
-
14.已知數(shù)列{an}滿足a1=1,an+1=2an,{bn}是等差數(shù)列,且a3=b1+b2,b1,b2,b5成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{}的前n項(xiàng)和Sn.bnan組卷:12引用:1難度:0.5 -
15.已知公比q大于1的等比數(shù)列{an}滿足a1+a3=10,a2=4.
(1)求{an}的通項(xiàng)公式;
(2)當(dāng){bn}通項(xiàng)公式分別為下列各式時(shí),求數(shù)列{bn}的前n項(xiàng)和Sn.
①nan;
②|2log2an-9|;
③.an(2n+1)(2n+1+1)組卷:15引用:1難度:0.5