我們來規(guī)定下面兩種數(shù):
①平方和數(shù):若一個三位或者三位以上的整數(shù)分成左、中、右三個數(shù)后滿足:中間數(shù)=(左邊數(shù))2+(右邊數(shù))2,我們就稱該整數(shù)是平方和數(shù),比如:對于整數(shù)251,它的中間數(shù)是5,左邊數(shù)是2,右邊數(shù)是1,∵22+12=5,∴251是平方和數(shù);再比如:3254,∵32+42=25,∴3254是一個平方和數(shù);當(dāng)然152,4253這兩個數(shù)也肯定是平方和數(shù);
②雙倍積數(shù):若一個三位或者三位以上的整數(shù)分成左、中、右三個數(shù)后滿足:中間數(shù)=2×左邊數(shù)×右邊數(shù),我們稱該整數(shù)是雙倍積數(shù);比如:對于整數(shù)142,它的中間數(shù)是4,左邊數(shù)是1,右邊數(shù)是2,∵2×1×2=4,∴142是一個雙倍積數(shù);再比如:3305,∵2×3×5=30,∴3305是一個雙倍積數(shù);當(dāng)然,241,5303也是一個雙倍積數(shù);
注意:在下列問題中,我們統(tǒng)一用字母a表示一個整數(shù)分出來的左邊數(shù),用字母b表示一個整數(shù)分出來的右邊數(shù),請根據(jù)上述定義完成下面問題:
(1)如果一個三位整數(shù)為平方和數(shù),且十位數(shù)字是9,則該三位整數(shù)是 390390;如果一個三位整數(shù)為雙倍積數(shù),十位數(shù)字是6,則該三位整數(shù)是 163或361163或361;
(2)若一個整數(shù)既是平方和數(shù),又是雙倍積數(shù),則a、b應(yīng)該滿足怎樣的數(shù)量關(guān)系?說明理由;
(3)若a1325b為一個平方和數(shù),a700b為一個雙倍積數(shù),求a2-b2的值.
【考點(diǎn)】因式分解的應(yīng)用.
【答案】390;163或361
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:6引用:1難度:0.6
相似題
-
1.已知x-y=
,xy=12,則x2y-xy2的值是( ?。?/h2>43發(fā)布:2024/12/23 11:30:2組卷:435引用:2難度:0.7 -
2.我們常利用數(shù)形結(jié)合思想探索了整式乘法的一些法則和公式.類似地,我們可以借助一個棱長為a的大正方體進(jìn)行以下探索:
(1)在大正方體一角截去一個棱長為b(b<a)的小正方體,如圖1所示,則得到的幾何體的體積為 .
(2)將圖1中的幾何體分割成三個長方體①、②、③,如圖2所示,因?yàn)锽C=a,AB=a-b,CF=b,所以長方體①的體積為ab(a-b),類似地,長方體②的體積為 ,長方體③的體積為 ;(結(jié)果不需要化簡)
(3)將表示長方體①、②、③的體積的式子相加,并將得到的多項(xiàng)式分解因式,結(jié)果為 .
(4)用不同的方法表示圖1中幾何體的體積,可以得到的等式為 .
(5)已知a-b=4,ab=2,求a3-b3的值.發(fā)布:2024/12/23 14:0:1組卷:275引用:3難度:0.4 -
3.如果一個正整數(shù)能表示為兩個連續(xù)的偶數(shù)的平方差,那么稱這個正整數(shù)為“神秘?cái)?shù)”.如果4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘?cái)?shù)”.
(1)28和2020這兩個數(shù)是“神秘?cái)?shù)”嗎?為什么?
(2)設(shè)兩個連續(xù)偶數(shù)為2k和2k+2(其中k取非負(fù)整數(shù)),由這兩個連續(xù)偶數(shù)構(gòu)造的“神秘?cái)?shù)”是4的倍數(shù)嗎?為什么?
(3)兩個連續(xù)的奇數(shù)的平方差(取正整數(shù))是“神秘?cái)?shù)”嗎?為什么?發(fā)布:2024/12/20 7:30:1組卷:336引用:5難度:0.9
把好題分享給你的好友吧~~