當(dāng)前位置:
2022-2023學(xué)年湖南省長(zhǎng)沙市開福區(qū)青竹湖湘一外國(guó)語(yǔ)學(xué)校八年級(jí)(上)期中數(shù)學(xué)試卷>
試題詳情
閱讀理解并填空:
(1)為了求代數(shù)式x2+2x+3的值,我們必須知道x的值.
若x=1,則這個(gè)代數(shù)式的值為 66;若x=2,則這個(gè)代數(shù)式的值為 1111;……
可見(jiàn),這個(gè)代數(shù)式的值因x的取值不同而變化,盡管如此,我們還是有辦法來(lái)考慮這個(gè)代數(shù)式的值的范圍.
(2)把一個(gè)多項(xiàng)式進(jìn)行部分因式分解可以解決求代數(shù)式的最大(或最小)值問(wèn)題.
例如:x2+2x+3=x2+2x+1+2=(x+1)2+2,因?yàn)椋▁+1)2是非負(fù)數(shù),所以這個(gè)代數(shù)式的最小值是 22,此時(shí)相應(yīng)的x的值是 -1-1.
(3)求代數(shù)式-x2-6x+12的最大值,并寫出相應(yīng)的x的值.
(4)試探究關(guān)于x、y的代數(shù)式5x2-4xy+y2+6x+25是否有最小值,若存在,求出最小值及此時(shí)x、y的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】6;11;2;-1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/23 4:0:8組卷:360引用:1難度:0.5
相似題
-
1.閱讀下列題目的解題過(guò)程:
已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問(wèn):(1)上述解題過(guò)程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2501引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:385引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過(guò)程);
(2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:121引用:3難度:0.4
把好題分享給你的好友吧~~