如圖,攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得立柱頂端O的仰角和立柱底部B的俯角均為30°,已知S的身高約為3米(將眼睛距地面的距離SA按3米處理).
(1)求攝影者到立柱的水平距離AB和立柱的高度OB;
(2)立柱的頂端有一長(zhǎng)為2米的彩桿MN,且MN繞其中點(diǎn)O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影者觀察彩桿MN的視角∠MSN(設(shè)為θ)是否存在最大值?若存在,請(qǐng)求出∠MSN取最大值時(shí)cosθ的值;若不存在,請(qǐng)說明理由.
3
3
【考點(diǎn)】平面向量的綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:92引用:5難度:0.5
相似題
-
1.已知
=(1,0),a=(-b,-32),12=(c,-32),x12+ya+zb=(1,1),則x2+y2+z2的最小值.c發(fā)布:2024/12/29 13:0:1組卷:178引用:3難度:0.5 -
2.對(duì)于空間向量
,定義m=(a,b,c),其中max{x,y,z}表示x,y,z這三個(gè)數(shù)的最大值.||m||=max{|a|,|b|,|c|}
(Ⅰ)已知,a=(3,-4,2).b=(x,-x,2x)
①直接寫出和||a||(用含x的式子表示);||b||
②當(dāng)0≤x≤4,寫出的最小值及此時(shí)x的值;||a-b||
(Ⅱ)設(shè),a=(x1,y1,z1),求證:b=(x2,y2,z2);||a+b||≤||a||+||b||
(Ⅲ)在空間直角坐標(biāo)系O-xyz中,A(2,0,0),B(0,2,0),C(0,0,2),點(diǎn)Q是△ABC內(nèi)部的動(dòng)點(diǎn),直接寫出的最小值(無需解答過程).||OQ||發(fā)布:2024/10/21 12:0:1組卷:87引用:2難度:0.3 -
3.如圖,在平行四邊形ABCD中,|
|=3,|AB|=2,BC=e1,AB|AB|=e2,AD|AD|與AB的夾角為AD.π3
(1)若=xAC+ye1,求x、y的值;e2
(2)求?AC的值;BD
(3)求與AC的夾角的余弦值.BD發(fā)布:2024/12/29 1:30:1組卷:949引用:10難度:0.1