記f′(x),g′(x)分別為函數f(x),g(x)的導函數.若存在x0∈R,滿足f(x0)=g(x0)且f′(x0)=g′(x0),則稱x0為函數f(x)與g(x)的一個“S點”.
(1)證明:函數f(x)=x與g(x)=x2+2x-2不存在“S點”;
(2)若函數f(x)=ax2-1與g(x)=lnx存在“S點”,求實數a的值;
(3)已知函數f(x)=-x2+a,g(x)=bexx.對任意a>0,判斷是否存在b>0,使函數f(x)與g(x)在區(qū)間(0,+∞)內存在“S點”,并說明理由.
b
e
x
x
【考點】基本初等函數的導數.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:2584引用:10難度:0.5