試卷征集
加入會員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2023-2024學(xué)年上海市浦東新區(qū)華東師大二附中高三(上)調(diào)研數(shù)學(xué)試卷

發(fā)布:2024/8/27 13:0:9

一、填空題(本大題共有12題,滿分53分,第1~6題每題4分,第7~12題每題5分)考生應(yīng)在答題紙的相應(yīng)位置直接填寫結(jié)果.

  • 1.已知全集U=(-∞,1)∪[2,+∞),集合A=(-1,1)∪[3,+∞),則
    A
    =

    組卷:24引用:2難度:0.8
  • 2.已知復(fù)數(shù)z滿足z?i=1-i(i為虛數(shù)單位),則Imz=

    組卷:24引用:5難度:0.7
  • 3.設(shè)常數(shù)a>0且a≠1,若函數(shù)y=loga(x+1)在區(qū)間[0,1]上的最大值為1,最小值為0,則實數(shù)a=

    組卷:90引用:2難度:0.8
  • 4.已知圓錐的底面半徑為3,沿該圓錐的母線把側(cè)面展開后可得到圓心角為
    2
    π
    3
    的扇形,則該圓錐的高為

    組卷:43引用:1難度:0.8
  • 5.若(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,則a1+a2+a3+a4=

    組卷:21引用:3難度:0.5
  • 6.方程|x|+|y|=1所表示的圖形的面積為

    組卷:147引用:9難度:0.7
  • 7.在等比數(shù)列{an}中,a3,a11分別是函數(shù)y=x3+4x2+3x+2的兩個駐點,則a7=

    組卷:60引用:3難度:0.7

三、解答題(本大題共有5題滿分79分)解下列各題必須在答題紙的相應(yīng)位置寫出必要的步驟.

  • 20.已知F為拋物線Γ:y2=4x的焦點,O為坐標(biāo)原點.過點P(p,4)且斜率為1的直線l與拋物線Γ交于A,B兩點,與x軸交于點M.
    (1)若點P在拋物線Γ上,求|PF|;
    (2)若△AOB的面積為
    2
    2
    ,求實數(shù)p的值;
    (3)是否存在以M為圓心、2為半徑的圓,使得過曲線Γ上任意一點Q作圓M的兩條切線,與曲線Γ交于另外兩點C,D時,總有直線CD也與圓M相切?若存在,求出此時p的值;若不存在,請說明理由.

    組卷:107引用:4難度:0.4
  • 21.設(shè)函數(shù)y=f(x)的定義域為開區(qū)間I,若存在x0∈I,使得y=f(x)在x=x0處的切線l與y=f(x)的圖像只有唯一的公共點,則稱切線l是y=f(x)的一條“L切線”.
    (1)判斷函數(shù)y=lnx是否存在“L切線”,若存在,請寫出一條“L切線”的方程,若不存在,請說明理由.
    (2)設(shè)f(x)=x3+ax2+1(x∈(0,c)),若對任意正實數(shù)c,函數(shù)y=f(x)都存在“L切線”,求實數(shù)a的取值范圍.
    (3)已知實數(shù)b>0,函數(shù)g(x)=e2x-bex+6x(x∈R),求證:函數(shù)y=g(x)存在無窮多條“L切線”,且至少一條“L切線”的切點的橫坐標(biāo)不超過
    ln
    b
    2

    組卷:74引用:1難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正