2023-2024學年山東省青島市萊西市三校聯(lián)考八年級(上)期中數(shù)學試卷(五四學制)
發(fā)布:2024/10/10 4:0:1
一.選擇題(共8小題,24分)
-
1.在Rt△ABC中,∠C=90°,sinA=
,則tanA=( ?。?/h2>35組卷:1299引用:7難度:0.7 -
2.如圖,AB是⊙O的直徑,△ACD內(nèi)接于⊙O,OC⊥AD,延長AB,CD在⊙O外相交于點E,若∠ACD=100°,則∠E的度數(shù)是( )
組卷:450引用:4難度:0.5 -
3.如圖,在?ABCD中,點E在AD上,且AE=2ED,CE交對角線BD于點F,若S△DEF=2,則S△BCF為( ?。?/h2>
組卷:1604引用:12難度:0.7 -
4.如圖,一艘船由A港沿北偏東60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,則A,C兩港之間的距離是( ?。?/h2>
組卷:520引用:3難度:0.6 -
5.如圖,在△ABC中,點D在線段AB上,請?zhí)砑右粭l件使△BCD∽△BAC,則下列條件中不正確的是( ?。?/h2>
組卷:303引用:3難度:0.8 -
6.如圖,△ABC是邊長為6的等邊三角形,點D,E在邊BC上,若∠DAE=30°,
,則BD的長度是( ?。?/h2>tan∠EAC=13組卷:811引用:3難度:0.6 -
7.如圖,MN是⊙O的直徑,A,B,C是⊙O上的三點,∠ACM=60°,B點是
的中點,P點是MN上一動點,若⊙O的半徑為1,則PA+PB的最小值為( )?AN組卷:1635引用:4難度:0.5 -
8.如圖,等邊三角形ABC的邊長為4,⊙C的半徑為
,P為AB邊上一動點,過點P作⊙C的切線PQ,切點為Q,則PQ的最小值為( ?。?/h2>3組卷:2419引用:9難度:0.5
三.解答題(共10小題,78分)
-
23.在平面直角坐標系中,已知OA=10cm,OB=5cm,點P從點O開始沿OA邊向點A以2cm/s的速度移動;點Q從點B開始沿BO邊向點O以1cm/s的速度移動.如果P、Q同時出發(fā),用t(s)表示移動的時間(0≤t≤5),
(1)用含t的代數(shù)式表示:線段PO=cm;OQ=cm.
(2)當△POQ與△AOB相似時,求出t的值.組卷:399引用:2難度:0.6 -
24.轉化是解決數(shù)學問題常用的思想方法之一,它可以在數(shù)與數(shù)、數(shù)與形、形與形之間靈活應用.如圖1,已知在Rt△ABC中,∠ABC=90°,BC=8,AB=6.請解答下面的問題:
觀察猜想:(1)如圖1,將△ABC繞點C按順時針方向旋轉60°得到△NMC,連接BM,則△BCM的形狀是 ;
探究證明:(2)如圖2,點D,E分別是邊BC,AC的中點,將△CDE繞點C按順時針方向旋轉60°得到△CMN,連接MB,AN.
①求證:△ACN∽△BCM;
②求AN的長.組卷:175引用:2難度:0.5