2023-2024學(xué)年湖北省隨州市隨縣部分學(xué)校聯(lián)考九年級(上)期中數(shù)學(xué)試卷
發(fā)布:2024/10/17 5:0:1
一、選擇題(每題3分,共30分)
-
1.下列標(biāo)志圖中,既是軸對稱圖形,又是中心對稱圖形的是( )
組卷:901引用:54難度:0.9 -
2.下列事件是必然事件的是( )
組卷:274引用:8難度:0.9 -
3.一元二次方程x2+4x=-3用配方法變形正確的是( ?。?/h2>
組卷:513引用:6難度:0.8 -
4.若點A(2,y1)、B(3,y2)、C(-1,y3)三點在二次函數(shù)y=x2-4x-m的圖象上,則y1、y2、y3的大小關(guān)系是( ?。?/h2>
組卷:721引用:10難度:0.8 -
5.如圖,AB為⊙O的直徑,弦CD⊥AB,E為
上一點,若∠CEA=28°,則∠ABD的度數(shù)為( ?。?/h2>?BC組卷:734引用:9難度:0.9 -
6.如圖所示,將等腰直角三角形ABC繞點A逆時針旋轉(zhuǎn)15°得到△AB'C',若AC=1,則圖中陰影部分面積為( )
組卷:326引用:4難度:0.7 -
7.用12m長的鐵絲圍成一個一邊靠墻的長方形場地,使該場地的面積為20m2,并且在垂直于墻的一邊開一個1m長的小門(用其它材料),若設(shè)垂直于墻的一邊長為x m,那么可列方程為( ?。?/h2>
組卷:1400引用:11難度:0.6 -
8.若M(-4,y1),N(-3,y2),P(1,y3)為二次函數(shù)y=x2+4x-5的圖象上的三點,則y1,y2,y3的大小關(guān)系是( ?。?/h2>
組卷:1655引用:16難度:0.5
三、解答題(共72分)
-
23.閱讀下面材料,并解決問題:
(1)如圖①等邊△ABC內(nèi)有一點P,若點P到頂點A、B、C的距離分別為3,4,5,求∠APB的度數(shù).
為了解決本題,我們可以將△ABP繞頂點A旋轉(zhuǎn)到△ACP′處,此時△ACP′≌△ABP,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA、PB、PC轉(zhuǎn)化到一個三角形中,從而求出∠APB= ;
(2)基本運用
請你利用第(1)題的解答思想方法,解答下面問題
已知如圖②,△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:EF2=BE2+FC2;
(3)能力提升
如圖③,在Rt△ABC中,∠ACB=90°,AC=1,∠ABC=30°,點O為Rt△ABC內(nèi)一點,連接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.組卷:11286引用:43難度:0.5 -
24.如圖,已知拋物線y=ax2+bx+3與x軸交于A(-1,0),B(3,0)兩點(點A在點B的左側(cè)),與y軸交于點C.
(1)求拋物線的解析式;
(2)若M為拋物線對稱軸上一動點,使得△MBC為直角三角形,請求出點M的坐標(biāo).
(3)如圖1,P為直線BC上方的拋物線上一點,PD∥y軸交BC于D點,過點D作DE⊥AC于E點.設(shè)m=PD+DE,求m的最大值及此時P點坐標(biāo).102組卷:985引用:7難度:0.3