2023-2024學(xué)年廣東省廣州中學(xué)高二(上)期中數(shù)學(xué)試卷
發(fā)布:2024/10/21 20:0:2
一、單選題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.在直角坐標(biāo)系xOy中,在y軸上截距為-1且傾斜角為
的直線方程為( ?。?/h2>3π4組卷:1052引用:10難度:0.9 -
2.若直線l∥α,且l的方向向量為(2,m,1),平面α的法向量為
,則m為( )(1,12,2)組卷:35引用:1難度:0.7 -
3.兩條直線l1:ax+(1+a)y=3,l2:(a+1)x+(3-2a)y=2互相垂直,則a的值是( )
組卷:149引用:5難度:0.7 -
4.如圖,在斜三棱柱ABC-A1B1C1中,M為BC的中點,N為A1C1靠近A1的三等分點,設(shè)
,AB=a,AC=b,則用AA1=c,a,b表示c為( ?。?/h2>NM組卷:263引用:6難度:0.7 -
5.“加上一個參數(shù)給橢圓,它的形狀會有美妙的變化”歐幾里得如是說,而這個參數(shù)就是橢圓的離心率.若橢圓
的離心率為x2m+y24=1,則該橢圓的長軸長為( ?。?/h2>32組卷:84引用:4難度:0.7 -
6.已知點A(2,-3),B(-5,-2),若直線l:mx+y+m-1=0與線段AB(含端點)有公共點,則實數(shù)m的取值范圍為( )
組卷:216引用:9難度:0.8 -
7.已知菱形ABCD中,∠ABC=60°,沿對角線AC折疊之后,使得平面BAC⊥平面DAC,則二面角B-CD-A的余弦值為( )
組卷:395引用:7難度:0.8
四、解答題,本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
-
21.在如圖所示的試驗裝置中,兩個正方形框架ABCD,ADEF的邊長都是1,且它們所在平面互相垂直,活動彈子M,N分別在正方形對角線AE和BD上移動,且EM和DN的長度保持相等,記
,活動彈子Q在EF上移動.EM=DN=a(0<a<2)
(1)求證:直線MN∥平面CDE;
(2)a為何值時,MN的長最???
(3)Q為EF上的點,求EB與平面QCD所成角的正弦值的最大值.組卷:91引用:2難度:0.3 -
22.已知點P到A(-2,0)的距離是點P到B(1,0)的距離的2倍.
(1)求點P的軌跡方程;
(2)若點P與點Q關(guān)于點B對稱,點C(5,8),求|QB|2+|QC|2的最大值;
(3)若過B的直線與第二問中Q的軌跡交于E,F(xiàn)兩點,試問在x軸上是否存在點M(m,0),使恒為定值?若存在,求出點M的坐標(biāo)和定值;若不存在,請說明理由.ME?MF組卷:97引用:3難度:0.3