試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2018-2019學年浙江省金華市東陽中學高一(下)開學數(shù)學試卷(2月份)

發(fā)布:2024/4/20 14:35:0

一、選擇題:本大題共10小題,每小題4分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.

  • 1.若sinα=-
    4
    5
    ,cosα=
    3
    5
    ,則下列各點在角α終邊上的是( ?。?/h2>

    組卷:35引用:3難度:0.9
  • 2.若集合P={y|y≥0},P∩Q=Q,則集合Q不可能是( ?。?/h2>

    組卷:9引用:7難度:0.9
  • 3.函數(shù)y=a|sinx|+2(a>0)的單調遞增區(qū)間是( ?。?/h2>

    組卷:65引用:3難度:0.9
  • 4.已知向量
    a
    、
    b
    不共線,若
    AB
    =
    a
    +2
    b
    ,
    BC
    =-4
    a
    -
    b
    ,
    CD
    =-5
    a
    -3
    b
    ,則四邊形ABCD是( ?。?/h2>

    組卷:344引用:7難度:0.9
  • 5.已知
    θ
    [
    π
    2
    π
    ]
    ,則
    1
    +
    2
    sin
    π
    +
    θ
    sin
    π
    2
    -
    θ
    =( ?。?/h2>

    組卷:144引用:7難度:0.9
  • 6.設向量
    a
    =(x-2,2),
    b
    =(4,y),
    c
    =(x,y),x,y∈R,若
    a
    b
    ,則|
    c
    |的最小值是(  )

    組卷:229引用:2難度:0.5
  • 7.已知函數(shù)f(x)=ln|ax|(a≠0),g(x)=x-3+sinx,則( ?。?/h2>

    組卷:48引用:3難度:0.9

三、解答題:本大題共5小題,共74分.解答應寫出文字說明、證明過程或演算步驟.

  • 21.已知向量
    a
    =(2cos(2x+
    π
    3
    ),sinx),
    b
    =(
    1
    2
    ,sinx),且f(x)=
    a
    ?
    b
    ,
    (1)求函數(shù)f(x)的單調遞減區(qū)間;
    (2)若0<α<
    π
    2
    β
    π
    f
    π
    4
    -
    β
    2
    =
    1
    2
    +
    3
    6
    ,
    f
    α
    +
    β
    2
    =
    1
    2
    -
    7
    3
    18
    ,求sinα的值.

    組卷:156引用:1難度:0.7
  • 22.已知函數(shù)f(x)=|x2-1|-4a,g(x)=x2-ax+4a(a∈R,a為常數(shù),
    (1)若函數(shù)F(x)=f(x)+g(x)在區(qū)間[0,2]上有兩個零點x1,x2,求實數(shù)a的取值范圍,并求
    1
    x
    1
    +
    1
    x
    2
    的最大值;
    (2)記
    h
    x
    =
    |
    g
    x
    x
    |
    ,若h(x)在區(qū)間(0,1]上單調遞減,求實數(shù)a的取值范圍.

    組卷:142引用:1難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正