2022-2023學(xué)年山西省晉中市八年級(jí)(上)期末數(shù)學(xué)試卷
發(fā)布:2024/8/7 8:0:9
一、選擇題(本大題共10個(gè)小題,每小題3分,共30分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)符合題目要求,請(qǐng)選出并在答題卡上將該選項(xiàng)涂黑)
-
1.
的相反數(shù)是( ?。?/h2>2組卷:1056引用:16難度:0.9 -
2.平面直角坐標(biāo)系是法國(guó)數(shù)學(xué)家笛卡爾將代數(shù)與幾何聯(lián)結(jié)起來(lái)的橋梁,它使得平面圖形中的點(diǎn)P與有序數(shù)對(duì)(x,y)建立了一一對(duì)應(yīng)關(guān)系,從而能把形象的幾何圖形和運(yùn)動(dòng)過(guò)程變成代數(shù)的形式,使得用代數(shù)方法研究幾何問(wèn)題成為現(xiàn)實(shí)這種研究方法體現(xiàn)的數(shù)學(xué)思想是( )
組卷:546引用:7難度:0.6 -
3.下列運(yùn)算中,結(jié)果正確的是( ?。?/h2>
組卷:149引用:1難度:0.7 -
4.下列命題中的真命題是( ?。?/h2>
組卷:77引用:3難度:0.6 -
5.如圖,小紅家的木門左下角有一點(diǎn)受潮,她想檢測(cè)門是否變形,準(zhǔn)備采用如下方法:先測(cè)量門的邊AB和BC的長(zhǎng),再測(cè)量點(diǎn)A和點(diǎn)C間的距離,由此可推斷∠B是否為直角,這樣做的依據(jù)是( ?。?br />
組卷:1023引用:10難度:0.5 -
6.中國(guó)的射擊項(xiàng)目在世界上居于領(lǐng)先地位.某射擊隊(duì)計(jì)劃從甲、乙、丙、丁四名運(yùn)動(dòng)員中選拔一人參加國(guó)際射擊比賽,在選拔過(guò)程中,每人射擊10次,計(jì)算他們的平均成績(jī)及方差如下表所示:
甲 乙 丙 丁 /環(huán)x9.7 9.6 9.5 9.7 s2 0.035 0.042 0.036 0.015 組卷:136引用:2難度:0.7 -
7.有一輛裝貨的汽車,為了方便裝運(yùn)貨物,使用了如圖所示的鋼架,其中∠ACB=90°,AC=1.2m,BC=0.9m,則AB的長(zhǎng)為( ?。?/h2>
組卷:484引用:5難度:0.6
三、解答題(本大題共8個(gè)小題,共55分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟)
-
22.請(qǐng)閱讀下列材料,并完成相應(yīng)任務(wù).
在數(shù)學(xué)探究課上,老師出了這樣一個(gè)題:如圖1,銳角∠BAC內(nèi)部有一點(diǎn)D,在其兩邊AB和AC上各取任意一點(diǎn)E,F(xiàn),連接DE,DF.
求證:∠BED+∠DFC=∠BAC+∠EDF.小麗的證法 小紅的證法 證明:
如圖2,連接AD并延長(zhǎng)至,點(diǎn)M,∠BED=∠BAD+∠EDA,∠DFC=∠DAC+∠ADF(依據(jù)),
又∵∠BAD+∠DAC=∠BAC,∠EDA+∠ADF=∠EDF,
∴∠BED+∠DFC=∠BAC+∠EDF.證明:
∵∠BED=80°,∠DFC=60°,∠BAC=51°,∠EDF=89°(量角器測(cè)量所得),
∴∠BED+∠DFC=140°,(計(jì)算所得).
∴∠BBED+∠DFC=∠BAC+∠EDF(等量代換).
(1)小麗證明過(guò)程中的“依據(jù)”是指數(shù)學(xué)定理:;
(2)下列說(shuō)法正確的是 .
A小麗的證法用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理
B.小麗的證法還需要改變∠BAC的大小,再進(jìn)行證明,該定理的證明才完整
C.小紅的證法用特殊到一般的方法證明了該定理
D.小紅的證法只要將點(diǎn)D在∠BAC的內(nèi)部任意移動(dòng)100次,重新測(cè)量進(jìn)行驗(yàn)證,就能證明該定理
(3)如圖3,若點(diǎn)D在銳角∠BAC外部,ED與AC相交于點(diǎn)G,其余條件不變,原題中結(jié)論還成立嗎?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)?zhí)剿鳌螧ED,∠DFC,∠BAC,∠EDF之間的關(guān)系.組卷:411引用:7難度:0.8 -
23.如圖,直線l1:y=
x+2和直線l2與x軸分別相交于A,B兩點(diǎn),且兩直線相交于點(diǎn)C,直線l2與y軸相交于點(diǎn)D(0,-4),OA=2OB.12
(1)求點(diǎn)A的坐標(biāo)及直線l2的函數(shù)表達(dá)式;
(2)求△ABC的面積;
(3)試探究在x軸上是否存在點(diǎn)P,使得∠BDP=45°,若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.組卷:1114引用:2難度:0.3