試卷征集
加入會(huì)員
操作視頻

數(shù)字保密傳遞常常是按一定規(guī)則其加密,收件人再按約定的規(guī)則將其解密.某電文按下更規(guī)則加密:將一個(gè)多位數(shù)的各個(gè)數(shù)位上的數(shù)都立方再加1,然后取運(yùn)算結(jié)果的個(gè)位上的數(shù)為加密后的數(shù)字.若某一位的數(shù)是1,則變成2,若某一位上的數(shù)是4,則變成5,…,那么“3859”加密后是
8360
8360

【答案】8360
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:22引用:2難度:0.5
相似題
  • 菁優(yōu)網(wǎng)1.世界上著名的萊布尼茨三角形如圖所示:則排在第10行從左邊數(shù)第3個(gè)位置上的數(shù)是

    發(fā)布:2024/11/5 8:0:2組卷:234引用:6難度:0.5
  • 2.王師傅在某個(gè)特殊的崗位上工作,他每上8天班后,就連續(xù)休息2天,如果這個(gè)星期六和星期天他休息,那么,至少再過
     
    個(gè)星期后他才能又星期天休息.

    發(fā)布:2024/11/6 8:0:1組卷:45引用:1難度:0.5
  • 3.如圖所示,對(duì)于任意正整數(shù),若n為奇數(shù)則乘3再加1,若n為偶數(shù)則除以2,在這樣一次變化下,我們得到一個(gè)新的自然數(shù).在1937年LotharCollatz提出了一個(gè)問題:如此反復(fù)這種變換,是否對(duì)于所有的正整數(shù),最終都能變換到1呢?這就是數(shù)學(xué)中著名的“考拉茲猜想”.如果某個(gè)正整數(shù)通過上述變換能變成1,我們就把第一次變成1時(shí)所經(jīng)過的變換次數(shù)稱為它的路徑長,例如5經(jīng)過5次變成1,則路徑長m=5.若輸入數(shù)n,路徑長為m,當(dāng)m=7時(shí),n的所有可能值有
    個(gè),其中最小值為

    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/7 8:0:2組卷:72引用:2難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正