已知雙曲線C:y2a2-x2b2=1(a>0,b>0),直線l在x軸上方與x軸平行,交雙曲線C于A,B兩點,直線l交y軸于點D.當l經(jīng)過C的焦點時,點A的坐標為(6,4).
(1)求C的方程;
(2)設(shè)OD的中點為M,是否存在定直線l,使得經(jīng)過M的直線與C交于P,Q,與線段AB交于點N,PM=λPN,MQ=λQN均成立若存在,求出l的方程;若不存在,請說明理由.
y
2
a
2
-
x
2
b
2
=
1
PM
PN
MQ
QN
【考點】雙曲線與平面向量.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:83引用:3難度:0.6
相似題
-
1.雙曲線Γ:
的一條漸近線與圓:x2+y2=16交于第一象限的一點M,記雙曲線Γ的右焦點為F,左頂點為A,則x24-y212=1的值為( ?。?/h2>MA?MF發(fā)布:2024/12/18 4:30:1組卷:70引用:4難度:0.7 -
2.F1、F2是雙曲線
的左、右焦點,點M為雙曲線E右支上一點,點N在x軸上,滿足∠F1MN=∠F2MN=60°,若E:x2a2-y2b2=1(a,b>0),則雙曲線E的離心率為( )3MF1+5MF2=λMN(λ∈R)發(fā)布:2024/12/20 13:30:1組卷:254引用:4難度:0.5 -
3.已知雙曲線
的左、右焦點分別是F1,F(xiàn)2,雙曲線C上有兩點A,B滿足C:x2a2-y2b2=1(a>0,b>0),且OA+OB=0,若四邊形F1AF2B的周長l與面積S滿足∠F1AF2=2π3,則雙曲線C的離心率為( ?。?/h2>3l2=80S發(fā)布:2024/12/10 1:0:1組卷:176引用:5難度:0.5
相關(guān)試卷