試卷征集
加入會員
操作視頻

菁優(yōu)網(wǎng)設橢圓C:
x
2
a
2
+
y
2
b
2
=1(a>b>0),左右焦點為F1,F(xiàn)2,上頂點為D,離心率為
6
3
,且
D
F
1
?
D
F
2
=-2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設E是x軸正半軸上的一點,過點E任作直線l與C相交于A,B兩點,如果
1
|
EA
|
2
+
1
|
EB
|
2
,是定值,試確定點E的位置,并求SΔDAE?SΔDBE的最大值.

【考點】橢圓與平面向量
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/21 8:0:1組卷:16引用:1難度:0.3
相似題
  • 1.已知橢圓
    E
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的左頂點、上頂點分別為A,B,離心率為
    3
    2
    ,△OAB(O為坐標原點)的面積為1.
    (1)求橢圓E的方程;
    (2)已知過點C(3,0)的直線l交橢圓E于P,Q兩點(點P,Q不在y軸上),直線BP,BQ分別交x軸于點M,N,若
    MC
    =
    m
    OC
    ,
    NC
    =
    n
    OC
    ,且
    m
    +
    n
    =
    5
    3
    ,求直線l的方程.

    發(fā)布:2024/10/24 16:0:1組卷:55引用:1難度:0.5
  • 2.已知橢圓C:
    x
    2
    4
    +
    y
    2
    3
    =1的左、右頂點分別為A,B,右焦點為F,過點A且斜率為k(k≠0)的直線l交橢圓C于點P.
    (1)若|AP|=
    12
    2
    7
    ,求k的值;
    (2)若圓F是以F為圓心,1為半徑的圓,連接PF,線段PF交圓F于點T,射線AP上存在一點Q,使得
    QT
    ?
    BT
    為定值,證明:點Q在定直線上.

    發(fā)布:2024/10/23 13:0:1組卷:56引用:1難度:0.5
  • 3.已知橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    (其中a>b>0)的上頂點與拋物線x2=4y的焦點重合,且橢圓C的四個頂點所圍成的菱形的面積為4.
    (1)求橢圓C的方程;
    (2)過點T(3,0)的直線l與C相交于A、B兩點,試問曲線C上是否存在一點Q,使得
    OA
    +
    OB
    =
    6
    OQ
    ,若存在,求出點Q的坐標;若不存在,請說明理由.

    發(fā)布:2024/10/23 11:0:2組卷:41引用:1難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網(wǎng) | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經營許可證出版物經營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正