試卷征集
加入會員
操作視頻

已知橢圓C:
x
2
a
2
+
y
2
b
2
=
1
(a>b>0)的左、右焦點分別為F1,F2,P(x0,y0)是橢圓C上異于左、右頂點的動點,△PF1F2的周長為6,橢圓C的離心率為
1
2

(1)求橢圓C的標準方程;
(2)若圓E與△PF1F2的三邊都相切,判斷是否存在定點M,N,使|EM|+|EN|為定值.若存在,求出點M,N的坐標;若不存在,請說明理由.

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:125引用:6難度:0.3
相似題
  • 1.
    M
    2
    ,
    1
    在橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    上,且點M到橢圓兩焦點的距離之和為
    2
    5

    (1)求橢圓C的方程;
    (2)已知動直線y=k(x+1)與橢圓C相交于A,B兩點,在x上是否存在點若P使得
    PA
    ?
    PB
    為定值?若存在,求出P點坐標,若不存在,說明理由.

    發(fā)布:2024/10/21 13:0:2組卷:64引用:1難度:0.1
  • 2.已知橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的左頂點為A(-2,0),焦距為
    2
    3
    .動圓D的圓心坐標是(0,2),過點A作圓D的兩條切線分別交橢圓于M和N兩點,記直線AM、AN的斜率分別為k1和k2
    (1)求證:k1k2=1;
    (2)若O為坐標原點,作OP⊥MN,垂足為P.是否存在定點Q,使得|PQ|為定值?

    發(fā)布:2024/10/18 2:0:2組卷:84引用:2難度:0.3
  • 菁優(yōu)網3.分別過橢圓E:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)左、右焦點F1、F2的動直線l1,l2相交于P點,與橢圓E分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率分別為k1、k2、k3、k4,且滿足k1-k3=k4-k2,已知當l1與x軸重合時,|AB|=2
    5
    ,|CD|=
    2
    5
    5

    (1)求橢圓E的方程;
    (2)是否存在定點M,N,使得|PM|+|PN|為定值?若存在,求出M、N點坐標,若不存在,說明理由.

    發(fā)布:2024/10/12 2:0:2組卷:95引用:2難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網 | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經營許可證出版物經營許可證網站地圖本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據,本網將在三個工作日內改正