試卷征集
加入會員
操作視頻

菁優(yōu)網(wǎng)綜合與實踐已知矩形ABCD,
AB
=
3
,AD=4,點E在邊BC上,EC=1,連接AE、DE.
(1)如圖1,圖中共有相似三角形
3
3
對;
(2)如圖2,將△DCE沿著CB平移,使點C與點B重合,得到△GBF,并將△GBF繞點B順時針旋轉,連接AF、GE,當旋轉到如圖3所示位置時,寫出與△ABF相似的三角形,無需證明.
(3)如圖4,在(2)的條件下,若直線AF與直線GE相交于點H,
①AF與GE的位置關系為
AF⊥EG
AF⊥EG
,請證明你的猜想.
②在旋轉過程中,當四邊形BFHG為矩形時,線段AH的長為
3
+
2
3
-
2
3
+
2
3
-
2

【考點】相似形綜合題
【答案】3;AF⊥EG;
3
+
2
3
-
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:85引用:2難度:0.1
相似題
  • 1.三角形的布洛卡點(Brocardpoint)是法國數(shù)學家和數(shù)學教育家克洛爾(A.LCrelle1780-1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當時的人們所注意.1875年,布洛卡點被一個數(shù)學愛好者法國軍官布洛卡(Brocard1845-1922)重新發(fā)現(xiàn),并用他的名字命名.如圖1,若任意△ABC內一點Q滿足∠1=∠2=∠3=∠α,則點Q叫△ABC的布洛卡點,∠α叫布洛卡角.
    菁優(yōu)網(wǎng)
    (1)如圖2,若點Q為等邊△ABC的布洛卡點,則布洛卡角α的度數(shù)是
    ;QA、QB、QC的長度關系是

    (2)如圖3,若點Q為等腰直角△ABC(其中∠ACB=90°)的布洛卡點.
    ①求證:QA2=QC?QB
    ②求△QAC、△QBA、△QCB的面積比.

    發(fā)布:2024/11/6 8:0:1組卷:665引用:1難度:0.1
  • 2.(1)小明用若干個正三角形和長方形拼成了一個直三棱柱的展開圖(如圖1),拼完后,小明看來看去覺得所拼圖形似乎存在問題,請你幫小明分析一下拼圖是否存在問題;若有多余塊,則把圖中多余部分涂黑;若還缺少,則直接在原圖中補全;
    (2)圖2為做成的直三棱柱及其三視圖,若直三棱柱的底面是邊長為4cm的正三角形,求主視圖中AE和左視圖中MN的長;
    (3)在(2)的條件下,若矩形ABFE與矩形ABCD相似,求此直三棱柱的側棱長.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/6 8:0:1組卷:39引用:1難度:0.1
  • 3.三角形的布洛卡點(Brocardpoint)是法國數(shù)學家和數(shù)學教育家克洛爾(A.LCrelle1780-1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當時的人們所注意.1875年布洛卡點被一個數(shù)學愛好者法國軍官布洛卡(Brocard1845-1922)重新發(fā)現(xiàn),并用他的名字命名.如圖1,若△ABC內一點P滿足∠PAB=∠PBC=∠PCA=∠α,則點P是△ABC的布洛卡點,∠α是布洛卡角.
    (1)如圖2,點P為等邊三角形ABC的布洛卡點,則布洛卡角的度數(shù)是
    ;PA、PB、PC的數(shù)量關系是
    ;
    (2)如圖3,點P為等腰直角三角形ABC(其中∠BAC=90°)的布洛卡點,且∠1=∠2=∠3.
    ①請找出圖中的一對相似三角形,并給出證明;
    ②將△ABP繞點A逆時針旋轉90°,得到四邊形APCD,若△ABC的面積為
    5
    2
    ,求四邊形APCD的面積.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/6 8:0:1組卷:192引用:1難度:0.2
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網(wǎng) | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正