試卷征集
加入會員
操作視頻

已知F1,F2分別為雙曲線C:
x
2
a
2
-
y
2
b
2
=
1
a
0
b
0
的左、右焦點,點A(x1,y1)為雙曲線C在第一象限的右支上一點,以A為切點作雙曲線C的切線交x軸于點B,若
cos
F
1
A
F
2
=
1
2
,且
F
1
B
=
2
B
F
2
,則雙曲線C的離心率為( ?。?/h1>

【答案】D
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/22 8:0:1組卷:63引用:2難度:0.5
相似題
  • 1.已知雙曲線C:
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =1(a>0,b>0)上任意一點P(異于頂點)與雙曲線兩頂點連線的斜率之積為
    1
    3
    ,E在雙曲線C上,F為雙曲線C的右焦點,|EF|的最小值為2-
    3

    (1)求雙曲線C的標準方程;
    (2)設O為坐標原點,直線l為雙曲線C的切線,過F作l的垂線,垂足為A,求證:A在定圓上.

    發(fā)布:2024/6/27 10:35:59組卷:65引用:1難度:0.3
  • 2.已知雙曲線
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    a
    0
    ,
    b
    0
    的離心率為2,右焦點F到漸近線的距離為
    3

    (1)求雙曲線的標準方程;
    (2)若點P為雙曲線右支上一動點,過點P與雙曲線相切的直線l,直線l與雙曲線的漸近線分別交于M,N兩點,求△FMN的面積的最小值.

    發(fā)布:2024/9/20 7:0:8組卷:119引用:2難度:0.5
  • 菁優(yōu)網3.如圖,O為坐標原點,F1,F2分別為雙曲線
    C
    x
    2
    -
    y
    2
    b
    2
    =
    1
    b
    0
    的左、右焦點,過雙曲線C右支上一點P作雙曲線的切線l分別交兩漸近線于A、B兩點,交x軸于點D,則下列結論正確的是(  )

    發(fā)布:2024/4/26 11:36:51組卷:214引用:3難度:0.2
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網 | 應用版本:4.8.2  |  隱私協議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經營許可證出版物經營許可證網站地圖本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正